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1 Introduction

In many experimental design situations, one or more of the factors in the study may be random factors. That
is, the levels of those factors are actually a sample from a larger population of levels and inferences are desired
about the population of factor levels (e.g., the variance of the population of factor levels). When one or more
of these random factors are examined along with one or more fixed factors, a mixed model approach is needed
to analyze such data. In this paper, we give a basic introduction of a two-way mixed effects model. Our main
focus is to demonstrate how to use different procedures in SPSS and SAS to analyze such data.

2 Two-Way Mixed Effects Models

2.1 Pearl Data Example

The data set we consider here is obtained from Neter et. al. (1996). The data pertain to the production
of imitation pearls. Researchers were interested in studying the effects of two factors on the market value
of the pearl. The main factor of interest (Factor A) is the number of coats of a special lacquer applied to
the opalescent plastic bead used as the base of the pearl. Factor A has three levels (6, 8, and 10 coats) that
were fixed in advance. The other factor (Factor B) was the batch of the beads used in the study. Each batch
consisted of 12 beads equally divided among the 3 levels of factor A. There were a total of 4 batches which
can be regarded as a random sample of batches from the bead production process. Information about the
variance between batches could give researchers an indication of the quality of their production process since
each batch was made at the same time. The data as entered into SAS is given in the appendix.

The model for these data is given below:

Yijk = µ + Ai + Bj + (AB)ij + εijk∑
Ai = 0

Bj ∼ N (0, σ2
B)

(AB)ij ∼ N (0, σ2
AB)

εijk ∼ N (0, σ2)

where Yijk is the market value of the kth pearl receiving the ith level of factor A and the jth level of factor B;
i = 1, 2, 3; j = 1, 2, 3, 4; k = 1, 2, 3, 4.

It is important to note that two types of models are commonly used for mixed models. They are called
the restricted and unrestricted models. The unrestricted model assumptions are limited to those listed above,

while the restricted model imposes the additional assumption that
3∑

i=1

(AB)ij = 0 for all j.

Data analysis for the pearl data is given below for both SAS and SPSS. Both of these software packages
base calculations on the unrestricted mixed effects model. Based on expected mean squares (EMS), the
MS(coat*batch) is used as the denominator in the test for the fixed coat effect and the random batch effect.
The available options for running mixed models are very comparable between SAS and SPSS. These similarities
are noted in the descriptions below. Finally, since the output from the two programs is also similar, output
from only one of the programs is given per procedure.

SAS: There are two procedures that can be used to obtain results for mixed models. These are: PROC
GLM and PROC MIXED. Examples of how to use these procedures are given below. It should be noted that
PROC MIXED is recommended for this type of analysis to avoid the pitfalls of PROC GLM.
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PROC GLM: Uses the method of least squares to fit general linear models. No other parameter estimation
method can be specified. This procedure is comparable to analyzing mixed models in SPSS by clicking:

Analyze >> General Linear Models >> Univariate

proc glm data=pearl;

class coat batch;

model market_value=coat batch coat*batch;

random batch coat*batch/test;

means coat/tukey lines e=coat*batch;

run;

Figure 1: Code

Explanation:

Class Specify all factors in the model.

Model Specify the model by equating the response variable to all fixed and random effects.

Random Specify which effects are random (including all random interactions).

Test Performs hypothesis tests for each effect specified in the model, using appropriate error terms as
determined by the expected mean squares.

Means Specify the fixed factors of interest. The arithmetic means and standard deviations for all factors
that are specified will be calculated for each factor level. Note that the arithmetic means are not
adjusted for other effects in the model. For adjusted means, the lsmeans statement should be used.
This is especially important for unbalanced data.

Tukey Specify the type of multiple comparison adjustment desired for testing all pairwise comparison. The
lines option specifies how the output should be displayed. There are several options to adjust for multi-
ple comparisons. These are: BON, DUNCAN, DUNNETT, DUNNETTL, DUNNETTU, GABRIEL, GT2, LSD, REGWQ, SCHEFFE, SIDAK, SMM, SNK, T, TUKEY, WALLER.

E= Specify the error mean square to use in the multiple comparisons. By default, the overall residual
or MSE is used.
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The GLM Procedure

Dependent Variable: market_value

Sum of

Source DF Squares Mean Square F Value Pr > F

Model 11 305.0916667 27.7356061 5.75 <.0001

Error 36 173.6250000 4.8229167

Corrected Total 47 478.7166667

R-Square Coeff Var Root MSE market_value Mean

0.637312 2.904593 2.196114 75.60833

Source DF Type III SS Mean Square F Value Pr > F

coat 2 150.3879167 75.1939583 15.59 <.0001

batch 3 152.8516667 50.9505556 10.56 <.0001

coat*batch 6 1.8520833 0.3086806 0.06 0.9988

Figure 2: Output (1)

Output (1) shows tests of all model effects. However, this output does not use the correct error term to
test the coat and batch effects. The only test that should be interpreted is the test for the interaction of
coat and batch. This output reveals that the variance term for the coat*batch interaction is not significantly
greater than zero (p-value 0.9988)

The GLM Procedure

Source Type III Expected Mean Square

coat Var(Error) + 4 Var(coat*batch) + Q(coat)

batch Var(Error) + 4 Var(coat*batch) + 12 Var(batch)

coat*batch Var(Error) + 4 Var(coat*batch)

Figure 3: Output (2)

Output (2) shows the expected mean squares for each of the model terms.
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The GLM Procedure

Tests of Hypotheses for Mixed Model Analysis of Variance

Dependent Variable: market_value

Source DF Type III SS Mean Square F Value Pr > F

coat 2 150.387917 75.193958 243.60 <.0001

batch 3 152.851667 50.950556 165.06 <.0001

Error 6 1.852083 0.308681

Error: MS(coat*batch)

Source DF Type III SS Mean Square F Value Pr > F

coat*batch 6 1.852083 0.308681 0.06 0.9988

Error: MS(Error) 36 173.625000 4.822917

Figure 4: Output (3)

Output (3) shows tests of all model effects with correct error terms. It is apparent there is a significant
coat effect (p-value < 0.0001) and the variance term for batch is significantly greater than zero (p-value
< 0.0001). The test for coat*batch is the same as in output (1).

Tukey’s Studentized Range (HSD) Test for market_value

NOTE: This test controls the Type I experimentwise error rate,

but it generally has a higher Type II error rate than REGWQ.

Alpha 0.05

Error Degrees of Freedom 6

Error Mean Square 0.308681

Critical Value of Studentized Range 4.33902

Minimum Significant Difference 0.6027

Means with the same letter are not significantly different.

Tukey Grouping Mean N coat

A 76.9250 16 3

A

A 76.7938 16 2

B 73.1063 16 1

Figure 5: Output (4)

Output (4) gives the Tukey pairwise comparison results. The means for each of the coat levels are given.
It appears the means for pearls with eight coat applications (coat = 2) and ten coat applications (coat=3)
are not significantly different. However, the mean for pearls given six coats (coat=1) is significantly different
from the other two coat applications.
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proc mixed data=pearl method=type3;

class coat batch;

model market_value=coat;

random batch coat*batch;

lsmeans coat/alpha=0.05 cl diff adjust=tukey;

run;

Figure 6: Code

2.1.1 PROC MIXED

Fits a variety of mixed linear models to data and allows specification of the parameter estimation method to
be used. This procedure is comparable to analyzing mixed models in SPSS by clicking: Analyze >> Mixed
Models >> Linear

Explanation:
The following window from the SAS help menu shows the options available within the PROC MIXED

statement. To gain a better understanding of these options, exploring the SAS help menu is recommended.

An important option to note from this menu is the METHOD= option.
This allows the user to specify the estimation method for the covariance parameters. Note in this example

TYPE3 was specified to conform with GLM for this balanced data, but this type of estimation is not necessarily
recommended and results from REML are shown in SPSS. The following estimation procedures are available:

METHOD= REML (Residual (Restricted) Maximum Likelihood) – Default Method

METHOD= ML (Maximum Likelihood)

METHOD= MIVQUE0 (Minimum Variance Quadratic Unbiased Estimation) – Same as MINQUE in SPSS

METHOD= TYPE1 (Method of Moments – ANOVA Table, Type I SS)
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METHOD= TYPE2 (Method of Moments – ANOVA Table, Type II SS)

METHOD= TYPE3 (Method of Moments – ANOVA Table, Type III SS)

Explanation (Cont):

Class Specify all factors in the model.

Model Specify the model by equating the response variable to all fixed effects. Note how this differs from
PROC GLM. There are also several options for this statement that can be further explored via the SAS
help menu.

Random Specify which effects are random (including all random interactions). No Test statement is avail-
able as in PROC GLM. However, there are also several options for this statement that can be further
explored via the SAS help menu.

Lsmeans Specify the fixed factors of interest. This statement will generate the least-squares means of fixed
effects. The Means statement is not an option in PROC MIXED.

Cl Requests that t-type confidence limits be constructed for each of the LS-means. The confidence
level is 0.95 by default, however this can be changed with the Alpha= option.

Diff Requests that differences of the LS-means be displayed.

Adjust= Specify the type of multiple comparison adjustment that is desired for testing all pairwise com-
parisons. There are several options to adjust for multiple comparisons. These are shown in the SAS
help menu window below.

Figure 7: Output: Shown for SPSS (using REML)

2.2 SPSS

There are also two procedures in SPSS that can be used to obtain results for mixed models. As noted in the
SAS example, these procedures are similar to PROC GLM and PROC MIXED in SAS. Recall that SPSS also
uses the unrestricted model. Default settings can be used for those features not discussed.
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2.2.1 GLM Procedure: Comparable to PROC GLM in SAS

Click on: Analyze >> General Linear Models >> Univariate
Step 1. Define Dependent Variable, Fixed Factors, and Random Factors.

Step 2. Specify additional features. By clicking the buttons on the right in the above menu, several other
options are available besides those listed below.

Post Hoc – Gives multiple comparison adjustments to test for mean differences in fixed effects. The
following window shows the possible options.

Possible Options – Descriptive Statistics, Parameter Estimates, Means with Confidence Interval Adjust-
ments, Estimates of Effect Size, Diagnostics

NOTE: Like SAS PROC GLM, there is no option to specify the type of estimation to use for variance
components in this procedure.

Step 3. Click OK.
Output: Shown for SAS. Note that even though in SPSS there is not an equivalent to the Test option

under the Random statement in SAS, the tests that are shown in the SPSS output are calculated using the
correct error terms. The output for the factor effect tests is like that of the SAS output (3).
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2.2.2 Mixed Procedure: Comparable to PROC MIXED in SAS

Click on: Analyze >> Mixed Models >> Linear
Step 1. Click the Continue button on the first screen that appears. Since this model does not require any

special correlation structure, nothing needs to be specified.
Step 2. Define dependent variable and factors in model. These factors will be defined as fixed or random

by clicking on the buttons at the bottom of the menu.

Step 3. Define fixed factor(s). Click on: Fixed in the menu from Step 1. The following menu will then
appear. In the box on the left, click on the fixed factor (Coat) and then click the Add button, so that Coat
appears in the box on the right (as shown). Then, click Continue.
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Step 4. Define random factor(s). Click on: Random in the menu from Step 1. A menu that is similar to
the fixed factor menu will appear. Simply define your random factor as you did your fixed factor in Step 3.

Step 5. Determine the estimation procedure to be used for the variance components. Click on: Estimation
in the menu from Step 1. Choose between the options: REML or ML. (Note: Not as many options as SAS
PROC MIXED).

Step 6. Specify pairwise comparisons and multiple comparison procedure for fixed factors. Click on: EM
Means in the menu from Step 1. The menu below will appear.

Step 6. (Cont). Click on the fixed effect (Coat), then Compare main effects. Notice the only two options
for multiple comparison are Bonferroni and Sidak. (LSD doesnt adjust for multiple comparisons).

Step 7. Click OK.

Figure 8: Output (REML estimation)

Output (5) shows five different information criteria.
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Figure 9: Output (6)

Output (6) gives the test for the fixed effect (Coat). It is clear that the number of Coats applied to the
pearl is a significant factor in the model (p-value ¡0.0001).

Figure 10: Output (7)

Output (7) shows the variance component estimates (calculated by REML) and their standard errors.

Figure 11: Output (8)

Output (8) gives the means for each of the coat levels with 95% confidence intervals. The pearls for which
6 coats (Coat=1) has the lowest mean.
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Figure 12: Output (9)

Output (9) gives the pairwise comparisons for the three coat levels. In this case, no corrections were made
for multiple comparisons (the LSD method was employed). As in the Tukey output (4) from PROC GLM,
the correction for multiple comparisons yielded the same overall conclusion as when no correction was made.
Pearls with 6 coat applications had a significantly different mean market value than pearls with 8 or 10 coat
applications (p-values < 0.0001 for both comparisons). However, there was no significant difference in the
mean market value for pearls with 8 or 10 applications (p-value=0.857).

3 Comparison of PROC GLM and PROC MIXED in SAS

PROC GLM fits standard linear models and PROC MIXED fits the wider class of random and mixed-effect linear
models in SAS.

The default fitting method used in PROC MIXED maximizes the restricted likelihood of the data under the
assumption that the data are normally distributed and any missing data are missing at random. This general
framework accommodates many common correlated-data methods, including variance component models and
repeated measures analyses.

PROC GLM fits some random-effects and repeated-measures models, although its methods are based on
method-of-moments estimation and a portion of the output applies only to the fixed-effects model. The
effects specified in the RANDOM statement are still treated as fixed as far as the model fit is concerned, and
they serve only to produce corresponding expected mean squares.

Given below is a brief comparison between PROC GLM and PROC MIXED in SAS.
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PROC GLM PROC MIXED
(1) Designed for “fixed effects” models with al-
lowance for some adjustments when random ef-
fects are present.

(1) Designed for “random” and “mixed effects”
models

(2) Estimation of fixed effects: Estimates are
based on Ordinary Least Squares.

(2) Estimation of fixed effects: Based on
Generalized Least Squares in a normal error
model.(estimates are maximum likelihood esti-
mates under normality).

(3) Estimation of variance components via the
RANDOM statement: Uses method of moments
estimation of solving expected mean squares for
variance components.

(3) Estimation of variance components: Uses
maximum likelihood or restricted maximum likeli-
hood estimation methods for variance components
(unless type 3 is requested).

(4) Both fixed and random effects are listed in the
model statement.

(4) Only the fixed effects are listed in the model
statement. The random effects are listed in the
random statement.

(5) The LSMEANS statement interprets all effects
as fixed, even the random effects. While the least
square means are correct, their standard errors
are not necessarily correct. This is true even if a
RANDOM statement is used.

(5) Effects in the MODEL statement are assumed
fixed. The standard error estimates for least
square means account for the random effects.

(6) The RANDOM statement under PROC GLM
invokes the calculation of expected mean squares
for the listed effects and the appropriate test using
the “test” option. The randomness of the effect
is not incorporated into the tests of main effects,
lsmeans, contrasts etc.

(6) Signals incorporation of the listed effects in
all aspects of inference. Various correlation struc-
tures, describing the dependencies of multiple ran-
dom effects can be selected using different options.

(7) The TEST statement is an important state-
ment to use correct error terms in testing model
effects (e.g. Subsampling designs, split-plot de-
sign).

(7) No TEST statement under PROC MIXED

(8) The REPEATED statement in PROC GLM
is used to specify various transformations with
which to conduct the traditional univariate or
multivariate tests.

(8) The REPEATED statement in PROC MIXED
is used to specify covariance structures for re-
peated measurements on subjects. The approach
used in PROC MIXED is more flexible and more
widely applicable than either the univariate or
multivariate approaches.

(9) PROC GLM is not efficient in handling miss-
ing values.

(9) PROC MIXED has a better mechanism for
handling missing values.

4 Crossover designs

4.1 Introduction

Crossover designs are a special type of repeated measures experiment where the experimental units are given
different treatments in different sequences over time.
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Sequence Sequence
Treatment Group 1 Group 2
Period 1 A B
Period 2 B A

Figure 13: Basic Pattern 1: 2-treatment 2-group 2-period

Sequence Sequence
Treatment Group 1 Group 2
Period 1 A B
Period 2 B A
Period 3 B A

Figure 14: Basic Pattern 2: 2-treatment 2-group 3-period

Sequence Sequence
Treatment Group 1 Group 2
Period 1 A B
Period 2 B A
Period 3 B A
Period 4 A B

Figure 15: Basic Pattern 3: 2-treatment 2-group 4-period

4.2 Why Crossover and its disadvantage

Crossover design is frequently used in animal behavior experiments because it offers some real advantages
over traditional parallel subject designs when comparing different treatments. For two treatments (A and
B) studies, traditional parallel studies test the treatments in parallel. One group of subjects receives only
treatment A; the other group receives only the other treatment B. At the end of the study, the two groups
are compared on some quantitative outcome measure (dependent variable of primary interest), most often by
using a t test for independent samples.

If all subjects received the two treatments in the same order, observed differences between treatments
would be confounded with any other changes that occur over time. In a study of the effect of treatments
on cholesterol levels, for example, subjects might change their diet and exercise behavior for the better as a
result of heightened awareness of health issues. This would likely manifest itself as a decrease in cholesterol
levels over the later portion of the study and might end up being attributed to the second treatment.

The two treatment, two-period crossover study seeks to overcome this difficulty by having half of the
subjects receive treatment A followed by treatment B while the other half receive B followed by A. The order
of administration is incorporated into the formal analysis. In essence, any temporal change that might favor
B over A in one group will favor A over B in the other group and cancel out of the treatment comparison.

A crossover design enables each subject to receive both treatments and thus requires fewer subjects for
the same number of observations than a parallel study. Also the repeated structure increases precision of
the treatment comparisons by having extra information on within subject variation. Since the comparison of
treatments is no longer be contaminated by the variability between subjects when the comparison is carried
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out within each individual.[g1] (In crossover, we can look at the treatment difference on each subject. But
before the observed difference which could be a result from the subject or the treatment or both.

There are a few major disadvantages of the crossover design. Generally, a long wash out period is needed
to wash out the carryover effect between treatments, which will force the experiment to last for a long time.
During the long duration, missing data could result. When the carryover effect can not be completely avoid by
the wash out, more complicated design with more time periods should be considered to balance the carryover.
For example, 3 periods: ABB and BAA or 4 periods ABBA and BAAB.

4.3 Analysis of structure and confounding

Although the structure of the crossover design is conceptually quite simple, it is still hard to read the literature
due to varied terminology and notation. The confusion is coming from for the treatment combination. For
that treatment combination, some people call it sequence and some people call it group.

Recall, in the design, a group of people take sequence 1 and the other group of people takes sequence
2. The sequence means a combination of treatment in specified order. In this discussion, it was denoted as
Group. All the design factors are denoted as the following:

� treatment (TREATMENT), with levels “A” and “B”,

� time period (PERIOD), with levels “1” and “2”,

� Sequence group (GROUP), with levels “A then B” and “B then A”.

If crossover studies were full-factorial designs (with factors GROUP, TREATMENT, and PERIOD), it could be pos-
sible to evaluate not only the main effects, but also the GROUP*TREATMENT, PERIOD*TREATMENT, GROUP*PERIOD,
and PERIOD*TREATMENT*GROUP interactions. However, crossover studies are not full factorial designs. Not all
combinations of factors appear in the study (there is no GROUP=’A then B’, PERIOD=’1’, TREATMENT=’B’
combination, for example). Also, each estimate of a main effect is confounded with a two-factor interaction.
For example, when the TREATMENT and PERIOD are fixed, then GROUP is fixed also, which means we cannot
separate the main effect of group and the two-factor interaction of TREATMENT*PERIOD. That is, if one of
the main effects is significant, it is impossible to tell whether the effect, its alias, or both are generating the
significant result. One could argue that there is no reason to expect a significant affect involving GROUP be-
cause subjects are assigned to GROUPS at random. Therefore, a significant GROUP effect should be interpreted
as resulting from a PERIOD*TREATMENT interaction and not from a difference between GROUPS. For similar
reasons, a significant PERIOD effect is not considered to be the result of a GROUP*TREATMENT interaction, nor
is a significant TREATMENT effect considered to be the result of a GROUP*PERIOD interaction.

4.3.1 Example 1

In summary, the experimental design to test 2 treatment effects is a crossover experiment, with two treatments
and two blocking factors – period and subject. The layout of this design is presented in Figure 1, where the
row blocking factor is “Period”, the column blocking factor is “Subject”, and the two treatments are denoted
by “A” and “B”.

Latin Squares 1 2 · · · n
Subject 1 2 3 4 · · · 2n− 1 2n
Period 1 A B B A · · · A B
Period 2 B A A B · · · B A

Figure 16: Crossover design
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The statistical model of this crossover experiment is:

yijk = µ + Pi + τj + Sk + εijk

where µ is the overall mean, Pi is the ith row (period) effect, i = 1, 2, τj is the jth treatment effect, j = 1, 2,
and Sk is the kth column (subject) effect, k = 1, 2, · · · , 2n, εijk is the random error with zero mean and
constant variance σ2. yijk is the observation in the ith row and kth column for the jth treatment, i.e., the time
for the kth subject to finish the jth treatment in the ith period.

4.3.2 Data summary

title " Data Statistics Summary";

proc sort data=a3;

by sequence period treatment;run;

proc means data=a3 mean std cv;

var Y;

by sequence period treatment;

output out=mean1 mean=avY;

run;

/*plot 1*/

proc sort data=mean1;

by period;

run;

title "Mean effect plot";

symbol1 i=j v=dot c=red pointlabel=(h=1.5) ;

symbol2 i=j v=star c=blue pointlabel=(h=1.5);

proc gplot data=mean1;

plot avy*period=treatment;

format avy 6.2;

run;

Analysis Variable : Y
Coeff of

Mean Std Dev Variation
14.2891630 2.7232130 19.0578903

Figure 17: sequence=1 period=1 Treatment=A

Analysis Variable : Y
Coeff of

Mean Std Dev Variation
15.2608359 2.9628641 19.4148220

Figure 18: sequence=1 period=2 Treatment=B
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Analysis Variable : Y
Coeff of

Mean Std Dev Variation
15.8548191 3.0215940 19.0578903

Figure 19: sequence=2 period=1 Treatment=B

Analysis Variable : Y
Coeff of

Mean Std Dev Variation
13.7538354 2.6702827 19.4148220

Figure 20: sequence=2 period=2 Treatment=A

PROC MIXED data=a3;

CLASSES sequence cow period treatment;

MODEL Y = sequence period treatment / solution ;

RANDOM cow(sequence);

*lsmeans period/alpha=0.05 cl diff adjust=tukey;

run;

Figure 21: Code
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In the example, sequence and treatment*period are equivalent (sequence= treatment*period) in the model
because when both treatment and period fixed, we know exactly which sequence it is. lsmeans statement can
give values of the period average and we can do similar things with treatment and sequence.

Cow, which is the subject, was considered as random effect. Since half of the cow are assigned to one
sequence and the rest are assigned to the other half, so they are nested within sequence. Accordingly, we
would like to know the variation of the cow effect.

Covariance Parameter Estimates
Cov Parm Estimate
cow(sequence) 7.5934
Residual 0.5203

Figure 22: Output

Fit Statistics
-2 Res Log Likelihood 230.0
AIC (smaller is better) 234.0
AICC (smaller is better) 234.2
BIC (smaller is better) 236.8

Solution for Fixed Effects
Standard

Effect Treatment sequence period Estimate Error DF t Value Pr > |t|
Intercept 15.2902 0.7355 28 20.79 < .0001
sequence 1 -0.02933 1.0233 28 -0.03 0.9773
sequence 2 0 · · · ·
period 1 0.5647 0.1862 28 3.03 0.0052
period 2 0 · · · ·
Treatment A -1.5363 0.1862 28 -8.25 < .0001
Treatment B 0 · · · ·

Type 3 Tests of Fixed Effects
Num Den

Effect DF DF F Value Pr > F
sequence 1 28 0.00 0.9773
period 1 28 9.19 0.0052
Treatment 1 28 68.04 < .0001

Overall, the two sequences are not significantly different with each other. It means that it is not statistical
important which treatment the cow receive in the first period and which treatment to receive in the second
period. Also, period 1 is significantly different with period 2 with p-value of 0.0052. The treatment effect is
also significantly different with each other.
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5 Repeated Measures

Any measurement on an experimental unit that can be repeated (either across time or across space) can
be analyzed under this broad heading. Crowder and Hand[3] describe repeated measures as the situation in
which measurements “are made of the same characteristic on the same observational unit but on more than
one occasion.” This is what is meant by the term longitudinal data. The scope of repeated measures can be
expanded to include clustered data as well; that is, measurements on members of a cluster that are related
in some way. For longitudinal data, the observational units are subjects, and a common occurrance is for
measurements on the subject to be correlated. For example, multiple measurements of milk production are
made on each cow in a study over time. For cluster data, there may be two layers of correlation: there is
correlation between different subjects within the same cluster, and if measurements are repeated on subjects,
then there is correlation between measurements on the same subject. For example, subjects (which are
clusters) may have both of their eyes (which are observational units, being members of one cluster) are
measured; there is correlation between the eyes of the same subject in addition to the correlation across
measurements of the same eye. In both of these cases, the usual model assumption of independent errors may
be violated, so a model that can incorporate this lack of independence is needed.

5.1 Covariance Structure

We assume N observational units (individuals or clusters) and ni observations of the response for the ith unit,
i = 1, . . . , N (if there are no missing values, then ni = n). The observations for the ith unit are coded in
the vector yi, which has length ni. The design matrices Xi and Zi consist of ni rows, Xi having q columns
and Zi having s columns. The entries of Xi are the values taken by the q continuous explanatory variables
and/or design indicators of fixed effects across the ni measurements of the ith unit; if any between-subjects
random effects exist, their design indicators appear in Zi, and their parameter estimates appear in γi. For
the response yi = (yi1, . . . , yini

), the model

yi = Xiβ + Ziγi + εi[
γi

εi

]
∼ N

(
0,

[
Gi 0
0 Ri

])
the term Covarianace Structure is used to describe how the matrices Gi and Ri are constrained in the (Normal
case of the) general linear mixed model:

y1, . . . ,yn
ind∼ Nni

(Xiβ, Vi)

where Vi = ZiGiZ
T
i + Ri is called the Variance-Covariance Matrix of the ith unit. Typically, it is assumed

that all of the Vis take the same form[4]. The examples that follow are forms of Ri, but can be used for Gi

as well:

5.1.1 Unstructured

This is the most general form:

Ri = σ2


1 ρ12 · · · ρ1ni

ρ21 1 ρ2ni

...
. . .

...
ρni1 ρni2 · · · 1


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In this case the varaince-covariance matrix contains ni (ni − 1) /2+1 nuisance parameters to be estimated, so
in practice, estimation of this structure may only converge for N � ni. Likewise the statistical power under
this structure is reduced since the only “constraint” on Ri is that it be symmetric.

5.1.2 ARMA(1,1)

The more structured forms of Ri involve assuming that some or all of the ρjks are a function of the “distance”
between observations j and k. If measurements are repeated across time, then the time variable will be
prominent in this distance function. If measurements are repeated across location, then the distance function
will involve some spatial metric reflecting the experimental design’s geometry. One of the more common
structures is the first order autoregressive, first order moving-average model, abbreviated ARMA(1,1):

Ri = σ2


1 γρ0 · · · γρni−2

γρ0 1 γρni−3

...
. . .

...
γρni−2 γρni−3 · · · 1


Notice that now there are only three parameters to be estimated, σ2, γ, and ρ. A special case of ARMA(1,1)
occurs when γ = ρ; this is called ARMA(1,0) or just simply AR(1), and only two covariance parameters σ2

and ρ are estimated.

5.1.3 Equicorrelation

Another model assumes all repeated measurements are equally correlated:

Ri = σ2


1 ρ · · · ρ
ρ 1 ρ
...

. . .
...

ρ ρ · · · 1


This structure (also called spherical or exchangeable) might be applicable to cluster data, where ρ is called the
intra-class correlation coefficient between two members of the same cluster and is “a relative measure of the
within-cluster similarity.”[4] A special case of equicorrelation, called compound symmetry, arises by enforcing

ρ = σ2
a

σ2
a+σ2

e
for some σ2

a and σ2
e . In that case, if σ2 = σ2

a + σ2
e , then

Ri =


σ2

a + σ2
e σ2

a · · · σ2
a

σ2
a σ2

a + σ2
e σ2

a
...

. . .
...

σ2
a σ2

a · · · σ2
a + σ2

e


5.1.4 Uncorrelated

Finally, we compare to the fixed effects case where independence is assumed over repeated measurements:

Ri = σ2


1 0 · · · 0
0 1 0
...

. . .
...

0 0 · · · 1


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This helps to show (when Gi = 0) that the standard linear model can be thought of as a special case of
repeated measures.

5.2 Software Packages

5.2.1 Dental Data Set Analysis in SAS

For all of our examples, we will use the dental measurements of Pothaff and Roy (1964). The subjects are
children who each had measurements taken at 8, 10, 12, and 14 years of age. Thus, the N = 27 children are
the observational units, there are ni = n = 4 measures on each child. Since there are no random effects, Ziγi

does not appear in the model:

Yijk = µ + genderi + agej + gender*ageij + εijk

εijk ∼ N (0, Rj)

where Rj = σ2

 1 · · · ρ14
...

. . .
...

ρ41 · · · 1


and the ρlm are constrained according to the covariance structure we specify with the TYPE= option of the
REPEATED statement. The following SAS code to enter the data is from [9]:

data forglm(keep=person gender y1-y4)

formixed(keep=person gender age y);

input person gender$ y1-y4;

output forglm;

y=y1; age=8; output formixed;

y=y2; age=10; output formixed;

y=y3; age=12; output formixed;

y=y4; age=14; output formixed;

datalines;

1 F 21.0 20.0 21.5 23.0

2 F 21.0 21.5 24.0 25.5

3 F 20.5 24.0 24.5 26.0

4 F 23.5 24.5 25.0 26.5

5 F 21.5 23.0 22.5 23.5

6 F 20.0 21.0 21.0 22.5

7 F 21.5 22.5 23.0 25.0

8 F 23.0 23.0 23.5 24.0

9 F 20.0 21.0 22.0 21.5

10 F 16.5 19.0 19.0 19.5

11 F 24.5 25.0 28.0 28.0

12 M 26.0 25.0 29.0 31.0

13 M 21.5 22.5 23.0 26.5

14 M 23.0 22.5 24.0 27.5

15 M 25.5 27.5 26.5 27.0

16 M 20.0 23.5 22.5 26.0

17 M 24.5 25.5 27.0 28.5

18 M 22.0 22.0 24.5 26.5

19 M 24.0 21.5 24.5 25.5

20 M 23.0 20.5 31.0 26.0

21 M 27.5 28.0 31.0 31.5

22 M 23.0 23.0 23.5 25.0

23 M 21.5 23.5 24.0 28.0

24 M 17.0 24.5 26.0 29.5

25 M 22.5 25.5 25.5 26.0

26 M 23.0 24.5 26.0 30.0

27 M 22.0 21.5 23.5 25.0

;

Both PROC GLM and PROC MIXED provide a REPEATED statement by which one or more repeated measures
can be specified. However, there are many nontrivial differences between these two procedures. Some of the
more important differences are:
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� Notice that the forglm data set has a multivariate response, while the formixed data set has a univariate
response. This is because PROC GLM requires there to be a separate response for each repeated measure,
while PROC MIXED allows a separate variable (in our case, age) to identify to which a particular measure
an observation corresponds.

� PROC GLM has as a model assumption that Ri is either uncorrelated or of “Type H” structure[7], whereas
PROC MIXED allows a choice between over 30 different structures for Ri through the TYPE= option of the
REPEATED statement.

� PROC GLM ignores observational units with missing observations, whereas PROC MIXED includes them.
(Though note that they must be missing at random for the estimators to remain unbiased.)

� PROC GLM assumes covariates are constant within observational units, whereas in PROC MIXED they are
allowed to vary. Since there are no time-varying covariates in our example data set we can use either
PROC GLM or PROC MIXED.

See[9] for a longer treatment of the differences.

5.2.2 SAS PROC GLM

Here is the SAS code to perform a repeated measures analysis on the data using PROC GLM. Notice the
mutivariate response, and the specification of the four values taken by age. The / nouni option suppresses
the tradational univariate GLM output. This is included since it would contain incorrect standard error
estimates.

proc glm data=forglm;

class gender;

model y1-y4=gender / nouni;

repeated age 4 (8 10 12 14) / printe;

run;

It is important to note that this is only applicable when Ri follows eith an uncorrelated or type H structure.
In order to test this model assumption, we requested a test of sphericity through the / printe option of the
repeated statement:

Sphericity Tests

Mauchly’s

Variables DF Criterion Chi-Square Pr > ChiSq

Transformed Variates 5 0.4998695 16.449181 0.0057

Orthogonal Components 5 0.7353334 7.2929515 0.1997

The p-value of 0.1997 indicates that we do not have evidence to suspect that the type H structure is
inappropriate. If the test were significant, then it is likely that PROC GLM would not be apprpriate for the
analysis of this data.[2]
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5.2.3 SAS PROC MIXED

Here is the code for the same analysis using PROC MIXED, but instead of being uncorrelated, the residuals are
fit to a specific covariance structure instead of being uncorrlated.

Compound Symmetry Note that repeated age/type=cs sub=person; has been shortened to repeated /type=cs sub=person;;
this is because for most data sets and one-level covariance structures, SAS seems to be able to automatically
determine which effect is the repeated one. subject=person identifies person as the variable corresponding
to observational units, type=cs requests that the covariance structure be compound symmetry. The r option
tells SAS to report the estimated Ri matrix.

proc mixed data=formixed;

class gender age person;

model y = gender|age;

repeated / type=cs subject=person r;

run;

Partial SAS output:

Estimated R Matrix for person 1

Row Col1 Col2 Col3 Col4

1 5.2604 3.2854 3.2854 3.2854

2 3.2854 5.2604 3.2854 3.2854

3 3.2854 3.2854 5.2604 3.2854

4 3.2854 3.2854 3.2854 5.2604

Covariance Parameter Estimates

Cov Parm Subject Estimate

CS person 3.2854

Residual 1.9750

The above output shows that for a given subject, the variance at a particular age is σ2
a + σ2

e = 5.2604,
and the covariance between any two nonequal ages is constrained to be the same, σ2

a = 3.2854; the residual
variance is σ2

e = 1.9750.

First Order Autoregressive If we change the covariance structure to AR(1) by setting / type=ar(1),
the output is shown in Figure 5.2.3.
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Estimated R Matrix for person 1

Row Col1 Col2 Col3 Col4

1 5.2467 3.2283 1.9863 1.2222

2 3.2283 5.2467 3.2283 1.9863

3 1.9863 3.2283 5.2467 3.2283

4 1.2222 1.9863 3.2283 5.2467

Covariance Parameter Estimates

Cov Parm Subject Estimate

AR(1) person 0.6153

Residual 5.2467

Figure 23:

Now, using our earlier ARMA(1,1) notation, γ = ρ here, and we see σ2 = 5.2467, and R is constrained by
ρ, ρ2, and ρ3 where ρ = 3.2283

5.2467
= 0.6153.

Unstructured If we change the covariance structure to be unstuctured by setting / type=un, the output
contains the 5 · 4/2 = 10 unique elements of Ri, and from the output below, we can calcualte R21 = σ2ρ21, so
ρ21 = 2.7168

5.4155
= 0.5016711 See Figure 5.2.3
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Estimated R Matrix for person 1

Row Col1 Col2 Col3 Col4

1 5.4155 2.7168 3.9102 2.7102

2 2.7168 4.1848 2.9272 3.3172

3 3.9102 2.9272 6.4557 4.1307

4 2.7102 3.3172 4.1307 4.9857

Covariance Parameter Estimates

Cov Parm Subject Estimate

UN(1,1) person 5.4155

UN(2,1) person 2.7168

UN(2,2) person 4.1848

UN(3,1) person 3.9102

UN(3,2) person 2.9272

UN(3,3) person 6.4557

UN(4,1) person 2.7102

UN(4,2) person 3.3172

UN(4,3) person 4.1307

UN(4,4) person 4.9857

Figure 24:

Notice that Ri contains all of the covariance parameter estimates reported by SAS by default, so it is
actually not necessary to ask for the Ri matrix in the unstructured case.

5.2.4 Example: Three-Factor Factorial Design with One Repeated Measure

This example will use data from an experiment with three between-subject factors: A, B, and C. Factors
A and B each have two levels, and factor C has four levels, resulting in 16 treatment combinations. Four
subjects (“subj”) are nested within each treatment combination. A response, Y, is measured at each of four
sites (“site”) on each subject’s body. The primary interest of this study is to compare measurements of the
response across sites within the body.

SAS’s PROC MIXED has many covariance structures available to model the dependence of observations
among the sites. Here is a procedure for selecting a suitable covariance structure:

Begin with an unstructured covariance structure (type = un in the code below). This requires estimation
of the greatest number of parameters, and the code may not always run. Examination of the covariance and
correlation matrices for measurements among sites may suggest simpler structures.

Next, try a compound symmetry (type = cs) or heterogeneous compound symmetry (type = csh) struc-
ture. Compound symmetry assumes the same covariance between observations at any two pairs of sites, while
heterogeneous compound symmetry assumes the same correlation between observations at any two pairs of
sites. The heterogeneous compound symmetry structure also allows unequal variances at the four sites.

Because of their relative simplicity, compound symmetry and heterogeneous compound symmetry struc-
tures are recommended if a better fitting covariance structure cannot be found. In this example, heterogeneous
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compound symmetry may be preferred over compound symmetry because variances appear to differ across
sites.

Other covariance structures can be tried, based on observed patterns in the covariance and correlation
matrices and on knowledge of the experimental system under study. It is not advisable to try every available
covariance structure. A final covariance structure can be selected with a preference for simple structures
(which require fewer degrees of freedom for the estimation of fewer parameters) and by comparing various
fit statistics given in the output. Recall that for information criteria such as AIC or BIC, a smaller value is
better.

We begin by fitting an unstructured covariance structure:

proc mixed data=example covtest cl;

class subj A B C site;

model Y = A|B|C|site / ddfm=kr;

repeated site / subject=subj type=un r rcorr;

run;

A few comments on the code:

CL (proc statement): This generates confidence limits for the variance-covariance estimates.

DDFM=KR (model statement): The Kenward-Roger procedure is recommended for calculating the denom-
inator degrees of freedom in repeated measures analyses. This procedure may result in denominator
degrees of freedom that are not integers.

R (repeated statement): This prints the covariance matrix.

RCORR (repeated statement): This prints the correlation matrix.

Estimated R Matrix for subj 11

Row Col1 Col2 Col3 Col4

1 0.04102 -0.00930 0.004626 0.009375

2 -0.00930 0.1029 0.03861 0.02113

3 0.004626 0.03861 0.1326 0.04486

4 0.009375 0.02113 0.04486 0.09459

Estimated R Correlation Matrix for subj 11

Row Col1 Col2 Col3 Col4

1 1.0000 -0.1431 0.06272 0.1505

2 -0.1431 1.0000 0.3306 0.2142

3 0.06272 0.3306 1.0000 0.4005

4 0.1505 0.2142 0.4005 1.0000
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Looking at the main diagonal of the estimated R matrix (the covariance matrix for the four sites), we
see that the variances do indeed look unequal between the sites. However, the covariance and correlation
matrices do not otherwise suggest suitable alternative covariance structures. Note that for the unstructured
model, we must estimate ten covariance parameters.

From the Type 3 tests of fixed effects, we find that A*C*site is significant, while no terms involving
factor B are significant. The non-integer denominator degrees of freedom are the result of the Kenward-Roger
procedure.

Type 3 Tests of Fixed Effects

Num Den

Effect DF DF F Value Pr > F

A 1 48 240.14 <.0001

B 1 48 2.06 0.1577

A*B 1 48 2.14 0.1503

C 3 48 72.56 <.0001

A*C 3 48 0.36 0.7817

B*C 3 48 1.45 0.2392

A*B*C 3 48 0.33 0.8012

site 3 46 300.66 <.0001

A*site 3 46 22.76 <.0001

B*site 3 46 0.06 0.9801

A*B*site 3 46 1.78 0.1640

C*site 9 69.2 14.71 <.0001

A*C*site 9 69.2 5.36 <.0001

B*C*site 9 69.2 1.16 0.3339

A*B*C*site 9 69.2 1.47 0.1768

Next, we try a heterogeneous compound symmetry structure, which requires the estimation of only five
parameters:

proc mixed data=example covtest cl;

class subj A B C site;

model Y = A|B|C|site / ddfm=kr;

repeated site / subject=subj type=csh r rcorr;

run;

We note the change in the covariance and correlation matrices:
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Estimated R Matrix for subj 11

Row Col1 Col2 Col3 Col4

1 0.04352 0.01165 0.01290 0.01092

2 0.01165 0.1043 0.01997 0.01690

3 0.01290 0.01997 0.1278 0.01871

4 0.01092 0.01690 0.01871 0.09152

Estimated R Correlation Matrix for subj 11

Row Col1 Col2 Col3 Col4

1 1.0000 0.1730 0.1730 0.1730

2 0.1730 1.0000 0.1730 0.1730

3 0.1730 0.1730 1.0000 0.1730

4 0.1730 0.1730 0.1730 1.0000

We can compare this model to the unstructured case by comparing the fit statistics:

type = un:

-2 Res Log Likelihood 143.7

AIC (smaller is better) 163.7

AICC (smaller is better) 165.0

BIC (smaller is better) 185.3

type = csh:

-2 Res Log Likelihood 153.8

AIC (smaller is better) 163.8

AICC (smaller is better) 164.2

BIC (smaller is better) 174.6

We see that the simpler csh structure barely changes the AIC, while decreasing BIC. We conclude that a
heterogeneous compound symmetry structure is preferable in this case.

A compound symmetry structure requires the estimation of only two parameters. Below are the associated
covariance and correlation matrices:
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Estimated R Matrix for subj 11

Row Col1 Col2 Col3 Col4

1 0.09278 0.01822 0.01822 0.01822

2 0.01822 0.09278 0.01822 0.01822

3 0.01822 0.01822 0.09278 0.01822

4 0.01822 0.01822 0.01822 0.09278

Estimated R Correlation Matrix for subj 11

Row Col1 Col2 Col3 Col4

1 1.0000 0.1964 0.1964 0.1964

2 0.1964 1.0000 0.1964 0.1964

3 0.1964 0.1964 1.0000 0.1964

4 0.1964 0.1964 0.1964 1.0000

We compare the fit statistics for the heterogeneous compound symmetry and compound symmetry struc-
tures:

type = csh:

-2 Res Log Likelihood 153.8

AIC (smaller is better) 163.8

AICC (smaller is better) 164.2

BIC (smaller is better) 174.6

type = cs:

-2 Res Log Likelihood 167.9

AIC (smaller is better) 171.9

AICC (smaller is better) 171.9

BIC (smaller is better) 176.2

The higher AIC and BIC for type = cs suggests that the heterogeneous compound symmetry structure is
preferable. Other covariance structures could be investigated in similar fashion.

5.2.5 Repeated Measures in SPSS

SPSS is very similar to SAS with respect to the fact that SPSS has equivalent procedures to PROC GLM and
PROC MIXED. The differences between these two procedures are equivalent to the differences between PROC GLM

and PROC MIXED in SAS. The SPSS version of PROC GLM can be obtained either through using the syntax
editor, or by going to Analyze > General Linear Model > Univariate, and then selecting the desired model.
Only the newest versions of SPSS have the equivalent of PROC MIXED. This new SPSS procedure can be
obtained either through the syntax editor, or by going to Analyze > Mixed Models > Linear.
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6 Appendix

6.1 Pearl data as entered into SAS

data pearl;

input market_value coat batch rep;

datalines;

72.0 1 1 1

74.6 1 1 2

67.4 1 1 3

72.8 1 1 4

72.1 1 2 1

76.9 1 2 2

74.8 1 2 3

73.3 1 2 4

75.2 1 3 1

73.8 1 3 2

75.7 1 3 3

77.8 1 3 4

70.4 1 4 1

68.1 1 4 2

72.4 1 4 3

72.4 1 4 4

76.9 2 1 1

78.1 2 1 2

72.9 2 1 3

74.2 2 1 4

80.3 2 2 1

79.3 2 2 2

76.6 2 2 3

77.2 2 2 4

80.2 2 3 1

76.6 2 3 2

77.3 2 3 3

79.9 2 3 4

74.3 2 4 1

77.6 2 4 2

74.4 2 4 3

72.9 2 4 4

76.3 3 1 1

74.1 3 1 2

77.1 3 1 3

75.0 3 1 4

80.9 3 2 1

73.7 3 2 2

78.6 3 2 3

80.2 3 2 4

79.2 3 3 1

78.0 3 3 2

77.6 3 3 3

81.2 3 3 4

71.6 3 4 1

77.7 3 4 2

75.2 3 4 3

74.4 3 4 4

;
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